
Resource Container Documentation
Release 0.2

Door43

Apr 11, 2017

Contents

1 Resource Container Structure 3
1.1 Directory Structure . 3
1.2 Project Directory . 4
1.3 Config . 5
1.4 Table of Contents . 5

2 Manifest File 9
2.1 Definitions . 10
2.2 Generating From USFM . 11

3 Container Types 13
3.1 Book (book) . 13
3.2 Image (img) . 14
3.3 Audio (audio) . 14
3.4 Video (vid) . 15
3.5 Help (help) . 15
3.6 Dictionary (dict) . 15
3.7 Manual (man) . 16
3.8 Bundle (bundle) . 17

4 Linking 19
4.1 Structure . 19
4.2 External URLS . 20
4.3 Examples . 20
4.4 Abbreviations . 21
4.5 Short Links . 22
4.6 Automatically Linking Bible References . 22

5 App Meta 25
5.1 translationStudio . 25
5.2 translationCore . 25

6 USFM to Manifest 27
6.1 Map . 27

7 Slug 29
7.1 Syntax . 29

i

7.2 Examples . 29

8 Date 31
8.1 Example . 31

9 Code Libraries 33
9.1 Android . 33
9.2 Node.js . 33
9.3 Python . 33

ii

Resource Container Documentation, Release 0.2

This site is the official documentation for Door43’s Resource Container specification. Resource Containers (RCs) are
the building blocks of content in our Door43 eco-system.

Contents:

Contents 1

Resource Container Documentation, Release 0.2

2 Contents

CHAPTER 1

Resource Container Structure

Resource containers (RCs) exist as directories. They may be optionally compressed or packaged so long as the
compressed file follows standard naming conventions for the file extension. For example:

• a zipped RC would end in .zip,

• a tarred RC would end in .tar,

• a tarred+bzip2 RC would end in .tar.bz2

A git repository is also a valid way to store RCs.

Note: When naming an RC directory or repository the best practice is to use a combination of the resource and
project identifiers e.g. en-ulb-gen. If the RC contains more than one project just use the resource identifier with
an optional Slug formatted qualifier e.g. en-ulb-nt where nt is the custom qualifier denoting the New Testament.

Directory Structure

RCs have a folder structure like the following:

my_resource_container/
|-.git/
|-.apps/
|-LICENSE.md
|-manifest.yaml
|-content/

• .git: only exists when the RC is stored in a git repository.

• .apps: is where applications can store custom meta data about the RC. See App Meta for more information.

• LICENSE.md: contains the appropriate license information for the RC.

• manifest.yaml: is the RC Manifest File.

3

Resource Container Documentation, Release 0.2

• content: contains the project files. The name of this directory is subject to the Manifest File. It is also possible
for there to be multiple directories or excluded altogether.

Project Directory

The folder structure of the project directory in RCs is mostly the same across RC types. The most common structure
is indicated below:

content/
|-config.yaml
|-toc.yaml
|-front/
|-01/
| |-title.txt
| |-sub-title.txt
| |-intro.txt
| |-01.txt
| |-02.txt
| ...
| |-reference.txt
| |-summary.txt
...
|-back/

Note: Where a .txt extension is shown above, the proper extension should be used according to the format indicated
in the Manifest File. For example .usfm or .md.

The directories within content shown above indicate chapters. There are two special chapters named front and
back that contain, if applicable, the front and back matter.

The files within each chapter represent the chunks of the chapter. Often the chunk file names will be numeric (e.g.
01.txt) but that is not required. The following reserved chunk names have special meaning:

• title.txt - the title of the chapter

• sub-title.txt - the sub title of the chapter

• intro.txt - the introduction to the chapter

• reference.txt - a reference displayed at the end of a chapter

• summary.txt - a summary displayed at the end of a chapter

In the case of front and back matter, the above named chunks apply to the project, such as the project title, project
summary, etc.

Condensed Form

Note: This specification makes no distinction between condensed and expanded forms. This is simply shown as an
alternative style. Client applications should be prepared to support your chosen style.

Most Container Types support a condensed form in which content in each folder is stored in a single file. e.g.

4 Chapter 1. Resource Container Structure

Resource Container Documentation, Release 0.2

content/
|-config.yaml
|-toc.yaml
|-front/
|-01/
| |-01.txt
...
|-back/

Where the file 01.txt may contain the title, sub-title, intro, chunks etc.

Content Sort Order

When utilizing content in an RC the order is very important. The content sorting rules are defined as:

Chapters

1. front matter directory

2. numeric chapter directories sorted numerically in ascending order

3. non-numeric chapter directories sorted alphabetically

4. back matter directory

Chunks

1. title

2. sub-title

3. intro

4. numeric chunks sorted numerically in ascending order

5. non-numeric chunks sorted alphabetically

6. reference

7. summary

Config

The config.yaml file contains information specific to each RC type. If a particular RC type does not need this file
it may be excluded.

Table of Contents

Note: Keys must always be represented even when the value is optional. If the key is not needed/available the value
may be empty.

Chapter directories and chunk files are often named with padded integers. A side effect of this is the natural file order
often represents the appropriate order. However, you may also indicate the order of chapters and frames by providing
a table of contents, toc.yaml, within the content directory. If no such file exists then the integer order followed by
the natural order of the files will be used.

1.3. Config 5

Resource Container Documentation, Release 0.2

The table of contents is built with small blocks as shown below. All of the fields in the blocks are optional:

title: "My Title"
sub-title: "My sub-title"
link: "my-link"
sections: []

The sections field allows you to nest more blocks. The link fields may accept the chunk that should be linked to.
Alternatively, you may provide a fully qualified link as defined in Linking.

Here is an example toc.yaml from translationAcademy. Generally speaking the title and sub-title fields in this file
should be the same as what is found in the subsequently named chunks. However, the TOC is allowed to deviate as
necessary.

title: "translationAcademy Table of Contents"
sub-title: ""
link: ""
sections:
-

title: "Introduction to translationAcademy"
sub-title: "This page answers the question: What is in the Introduction?"
link: ""
sections:

-
title: "Introduction"
sub-title: ""
link: ""
sections:

-
title: ""
sub-title: ""
link: "ta-intro"
sections: []

-
title: ""
sub-title: ""
link: "uw-intro"
sections: []

-
title: "Table Of Contents - Process Manual Vol 1"
sub-title: "This page answers the question: What is in the process manual

→˓volume 1?"
sections:

-
title: "Process Manual Volume 1"
sub-title: ""
link: ""
sections:

-
title: "1. Getting Started"
sub-title: ""
link: ""
sections:
-
title: ""
sub-title: ""
link: "process-manual"

6 Chapter 1. Resource Container Structure

https://git.door43.org/Door43/en-ta

Resource Container Documentation, Release 0.2

sections: []
-
title: ""
sub-title: ""
link: "getting-started"
sections: []

-
title: "2. Setting Up a Translation Team"
sub-title: ""
link: ""
sections:
-
title: ""
sub-title: ""
link: "setup-team"
sections: []

-
title: "Table Of Contents - Translation Manual Volume 1"
sub-title: "This page answers the question: What is in Volume 1 of the

→˓translation manual?"
sections: []

Alternatively you can choose to use a simplified table of contents as shown below.

Note: We may deprecate this form due to the addition of content sorting instructions describe above. Since sorting is
defined this form may not provide anything useful.

-

chapter: '01'
chunks:

- title
- '01'
- '02'
- '03'
- '04'
- '05'
- '06'
- '07'
- '08'
- '09'
- '10'
- '11'
- '12'
- '13'
- '14'
- '15'
- '16'
- reference

-
chapter: '02'
chunks:

- title
- '01'
- '02'
- '03'

1.4. Table of Contents 7

Resource Container Documentation, Release 0.2

- '04'
- '05'
- '06'
- '07'
- '08'
- '09'
- '10'
- '11'
- '12'
- reference

The simple version will rely on the available content (titles, references, etc.) to generate the table of contents (readable
titles will be retrieved from the content itself).

8 Chapter 1. Resource Container Structure

CHAPTER 2

Manifest File

Note: Keys must always be represented even when the value is optional. If the key is not needed/available the value
may be empty.

Resource Containers (RCs) have a manifest.yaml file that describes its content and structure. Most of the infor-
mation adheres to the Dublin Core Meta Data Initiative and can be found nested within the dublin_core key.

dublin_core:
conformsto: 'rc0.2'
contributor:

- 'A Contributor'
- 'Another Contributor'

creator: 'Wycliffe Associates'
description: 'The Unlocked Literal Bible is an open-licensed version of the Bible

→˓that is intended to provide a form-centric translation of the Bible.'
format: 'text/usfm'
identifier: 'ulb'
issued: '2015-12-17'
language:

identifier: 'en'
title: 'English'
direction: 'ltr'

modified: '2015-12-22T12:01:30-05:00'
publisher: 'Door43'
relation:

- 'en/udb'
- 'en/tn'
- 'en/tq'
- 'en/tw'

rights: 'CC BY-SA 4.0'
source:

-

9

http://dublincore.org/documents/dcmi-terms

Resource Container Documentation, Release 0.2

identifier: 'asv'
language: 'en'
version: '1901'

subject: 'Bible translation'
title: 'Unlocked Literal Bible'
type: 'book'
version: '3'

checking:
checking_entity:

- 'Wycliffe Associates'
checking_level: '3'

projects:
-

categories:
- 'bible-ot'

identifier: 'gen'
path: './content'
sort: 1
title: 'Genesis'
versification: 'kjv'

Definitions

• dublin_core

– conformsto: the version of the RC specification used by the RC.

– contributor: an array of names or aliases to people that have contributed to the resource.

– format: the file format of content within the RC, e.g.

* text/usfm

* image/png

* audio/mp3

– identifier: a Slug formatted string uniquely identifying the resource.

– issued: the Date of publication.

– publisher: the name of the individual or organization responsible for publishing the resource.

– relation: a array of Short Links to related resources.

– type: the RC type.

• projects: an array of projects inside the RC.

– identifier: a Slug formatted string uniquely identifying the project.

– path: the relative path to the project within the RC. Depending on the RC type this may be a directory or
a file.

– versification: the system used for placing verse markers and consequently chunk markers.

10 Chapter 2. Manifest File

Resource Container Documentation, Release 0.2

Generating From USFM

See USFM to Manifest for instructions on populating the manifest.yaml from the headers in a usfm file.

2.2. Generating From USFM 11

Resource Container Documentation, Release 0.2

12 Chapter 2. Manifest File

CHAPTER 3

Container Types

Resource Containers (RCs) can be used to represent different forms of data. These different forms are represented by
the following types.

The types below are noted by Type Name (Type Slug) e.g. Book (book)

Note: Most types support a Condensed Form.

Book (book)

Represents any text that is structured like a book, there are chapters and chunks.

Config

A book may reference supplementary RCs in it’s config.yaml file via Linking. Such references must be grouped
by the corresponding RC type. The order of elements in each of these groups should be respected.

content:

01: // chapter
01: // chunk

dict:
- '//tw/bible/dict/creation'
- '//tw/bible/dict/god'
- '//tw/bible/dict/heaven'
- '//tw/bible/dict/holyspirit'

help:
- '//tq/gen/help/01/01'
- '//tn/gen/help/01/01'

img:
- '//ulb/gen/img/01/01'

13

Resource Container Documentation, Release 0.2

Note: Implementation Notes: References to external RCs may be displayed in the application along the side of the
book content in order to provide contextual information.

Image (img)

Represents a set of images that follows the same structure as a book. In most cases you will want to provide a single
image to an equivalent chunk in the related book. However, any image can be included so long as it follows the
requirements for identifiers.

Below is an example with a format of image/png.

content/
...
|-01/
| |-title.png
| |-sub-title.png
| |-intro.png
| |-reference.png
| |-summary.png
| |-01.png
| |-02.png
| ...
...
|-front/
|-back/
...

Audio (audio)

Represents a set of audio files that follows the same structure as a book. It is valid to provide a single audio file to any
equilvilant chunk in a book.

Below is an example with a format of audio/mp3.

content/
...
|-01/
| |-title.mp3
| |-sub-title.mp3
| |-intro.mp3
| |-reference.mp3
| |-summary.mp3
| |-01.mp3
| |-02.mp3
| ...
...
|-front/
|-back/
...

14 Chapter 3. Container Types

Resource Container Documentation, Release 0.2

Video (vid)

Represents a set of video files that follows the same structure as a book. It is valid to provide a single video file to any
equivalent chunk in a book.

Below is an example with a format of video/mp4.

content/
...
|-01/
| |-title.mp4
| |-sub-title.mp4
| |-intro.mp4
| |-reference.mp4
| |-summary.mp4
| |-01.mp4
| |-02.mp4
| ...
...
|-front/
|-back/
...

Help (help)

Note: These types do not support a Condensed Form.

A helpful resource to supplement chunks in a book. e.g. notes or questions. Currently all help RCs must use the
markdown format.

Each chunk contains one or more helps which correlate to the corresponding chunk in a book RC:

In the beginning God created

This introductory statement gives a summary of the rest of the chapter. AT: "This is
→˓about how God made...in the beginning." Some languages translate it as "A very long
→˓time ago God created." Translate it in a way that that shows that this actually
→˓happened and is not just a folk story.

In the beginning

This refers to the start of the world and everything in it.

When parsed by an app the helps in this chunk are split at the headers. If there is preceding text (without a header) it
will be displayed as a single help and a short snippet of the text will be used for the header if applicable.

Dictionary (dict)

A standalone dictionary of terms. Currently all dictionary RCs must use the markdown format.

The dictionary terms are used as the chapter Slug and the description of the term is placed inside a 01.txt file:

3.4. Video (vid) 15

Resource Container Documentation, Release 0.2

content/
|-config.yaml
|-aaron/
| |-01.txt
|
|-abel/
...
|-unclean/

Note: Lengthy dictionary terms may be split into more than one chunk.

The 01.txt file contains the description of the term where the header is the title of the term and the rest is the
description:

Aaron

God chose Aaron to be the first high priest for the people of Israel.

The config.yaml file is used to indicate related terms, aliases, definition title, and examples.

aaron:
def_title: 'Description'
see_also:

- 'covenant'
- 'testimony'

aliases:
- aaronalias # note: not a real alias for this word

examples:
- '09-15'
- '10-05'

Examples are tricky because a dictmay be referenced by many different resources and projects. Therefore we cannot
specify a RC link but instead must simply provide the chapter and chunk that contains the example.

Manual (man)

A user manual. For now manual RCs must use the markdown format.

Manuals are a collection of modules (articles):

content/
...
|-translate-unknowns
| |-title.txt
| |-sub-title.txt
| |-01.txt
...
|-writing-decisions/

The 01.txt file contains the translation of the module.

16 Chapter 3. Container Types

Resource Container Documentation, Release 0.2

Note: If desired the module can be split into multiple chunks.

The config.yaml file indicates recommended and dependent modules:

translate-unknowns:
recommended:

- 'translate-names'
- 'translate-transliterate'

dependencies:
- 'figs-sentences'

Dependencies are Slug s of modules that should be read before this one. Recommendations are modules that would
likely benefit the reader next.

Bundle (bundle)

A bundle is simply a flat directory (no sub-folders) with a single file for each project. This type is particularly suited
for USFM when providing “USFM Bundles”.

A project block in the Manifest File:

projects:
-

identifier: 'gen'
title: 'Genesis'
versification: 'kjv'
sort: 1
path: './01-GEN.usfm'
categories:
- 'bible-ot'

Directory structure

myrc/
|-01-GEN.usfm
|-LICENSE.md
|-manifest.yaml

Note: When your application supports “USFM Bundles” it can identify the them in two ways

• attempt to read the Manifest File to determine type as bundle and the format as text/usfm.

• look for any *.usfm files in the root directory if the Manifest File does not exist.

In this way the application will satisfy both the Bundle RC type described above and generic “USFM Bundles” as is
common in the industry.

3.8. Bundle (bundle) 17

http://ubsicap.github.io/usfm/

Resource Container Documentation, Release 0.2

18 Chapter 3. Container Types

CHAPTER 4

Linking

A Resource Container (RC) link allows one RC to reference content from another RC.

All RC links follow a very simple structure in two different flavors.

• Anonymous links - have no title and are declared by enclosing the link in double brackets

• Titled links - have a title and are indicated by enclosing the link title in single brackets and the link in parenthe-
ses.

For example:

[[language/resource/project/type]]

[Link Title](language/resource/project/type)

Structure

The minimum form of a link is language/resource/project/type. We interpret this as the project content
directory inside the RC. This is illustrated below:

link
en/ulb/gen/book

file system
en_ulb_gen_book/

|-LICENSE.md
|-manifest.yaml
|-content/ <-- link points here

From this point we can lengthen the link to include a chapter Slug which resolves to the chapter directory.

link
en/ulb/gen/book/01

19

Resource Container Documentation, Release 0.2

file system
en_ulb_gen_book/

|-LICENSE.md
|-manifest.yaml
|-content/

|-01/ <-- link points here

Going a step further we can link to a specific chunk

link
en/ulb/gen/book/01/01

file system
en_ulb_gen_book/

|-LICENSE.md
|-manifest.yaml
|-content/

|-01/
|-01.usfm <-- link points here

In some of the examples above the link was not pointing directly at a file. In those cases the link should resolve to the
first available file in order of the sorting priority described in Content Sort Order.

External URLS

You may link to online media by simply using a url instead of an RC identifier.

• [[https://www.google.com]]

• [Google](https://www.google.com)

Links where the path begins with http:// or https:// are treated as external urls.

Examples

book

• [Genesis 1:2](en/ulb/gen/book/01/02)

• [Open Bible Stories 1:2](/en/obs/obs/book/01/02)

help

• [[en/tq/gen/help/01/02]] - links to translationQuestions for Genesis 1:2

• [[en/tn/gen/help/01/02]] - links to translationNotes for Genesis 1:2

dict

• [Canaan](en/tw/bible/dict/canaan)

20 Chapter 4. Linking

Resource Container Documentation, Release 0.2

man

• [Translate Unknowns](en/ta-vol1/translate/man/translate-unknowns)

img

• [Open Bible Stories 1:2](en/obs/obs/img/01/02)

• [Genesus 1:2-6](en/ulb/gen/img/01/02)

vid

• [Open Bible Stories 1:2](en/obs/obs/vid/01/02)

audio

• [Open Bible Stories 1:2](en/obs/obs/audio/01/02)

bundle

• [Genesis](en/ulb/gen/bundle/01/01)

Note: Linking to a bundle will only resolve down to the project level. e.g. the 01/01 will be ignored and the entire
project returned. If you must link to a section within the project you will have to parse the content and manually
resolve the rest of the link if the format supports references.

Formats that support references are:

• usfm

• osis

Abbreviations

In certain cases it is appropriate to abbreviate a link. Below are a list of cases where you are allowed to use an
abbreviation.

Links within the same RC

When linking to a different section within the same RC you may just provide the chapter/chunk Slug s.

Manual example:

• [Translate Unknowns](translate-unknowns)

Dictionary example:

• [Canaan](canaan)

Book example:

• [Genesis 1:2](01/02)

4.4. Abbreviations 21

Resource Container Documentation, Release 0.2

Links to any language

At times you may not wish to restrict the link to a particular language of the RC. In that case you may exclude the
language code from the beginning of the path and place an extra slash / in it’s place.

Example:

• [[//ta-vol1/translate/man/translate-unknowns]]

• [Translate Unknowns](//ta-vol1/translate/man/translate-unknowns)

Short Links

A short link is used to reference a resource but not a project. There is nothing fundamentally different from regular
links. Short links are simply composed of just the language and resource.

• en/tn

Short links are most often used within the Manifest File when referring to related resources.

Automatically Linking Bible References

Bible references in any RC should be automatically converted into resolvable links according to the linking rules for
book resource types. Of course, if the reference is already a link nothing needs to be done.

Conversion of biblical references are limited to those resources that have been indexed on the users’ device. Conversion
should be performed based on any one of the following:

• a case insensitive match of the entire project title.

• a start case (first letter is uppercase) match of the project Slug e.g. Gen.

For each case above there must be a valid chapter:verse reference immediately after the matching word separated
a single white space. For example:

Genesis 1:1
genesis 1:1
Gen 1:1
Gen 1:1-3

The chapter and verse numbers should be converted to properly formatted Slug s.

Example

Given the French reference below:

Genèse 1:1

If the user has only downloaded the English resource the link will not resolve because the title Genesis or genesis
does not match Genèse or genèse. Neither does the camel case Slug Gen match since it does not match the entire
word.

If the user now downloads the French resource the link will resolve because Genèse or genèse does indeed match
Genèse or genèse. The result will be:

22 Chapter 4. Linking

Resource Container Documentation, Release 0.2

[Genèse 1:1](fr/ulb/gen/book/01/01)

Multiple Matches

When a match occurs there may be several different resources that could be used in the link such as ulb or udb.
When more than one resource Slug is available use the following rules in order until a unique match is found:

1. use the same resource as indicated by the application context.

2. use the RC allowed by the translate_mode set in the application.

3. choose the first resource found or let the user choose (e.g. pop up).

Aligning Verses to Chunks

Because chunks may contain a range of verses, a passage reference may not exactly match up to a chunk. Therefore
some interpolation may be nessesary. For both chapter and verse numbers perform the follow:

Given a chapter or verse number key. And an equivalent sorted list list of chapters or verses in the
matched resource

• incrementally compare the key against items in the list.

• if the integer value of the current list item is less than the key: continue.

• if the integer value of the current list item is greater than the key: use the previous list item.

• if the end of the list is reached: use the previous list item.

For example chunk 01 may contain verses 1-3 whereas chunk 02 contains verses 4-6. Therefore, verse 2 would
resolve to chunk 01.

If no chapter or chunk can be found to satisfy the reference it should not be converted to a link.

4.6. Automatically Linking Bible References 23

Resource Container Documentation, Release 0.2

24 Chapter 4. Linking

CHAPTER 5

App Meta

Applications can store meta data in a Resource Container (RC) within the .apps directory.

Note: The contents of this directory are outside the scope of the RC specification. The examples below are only a
suggestion.

translationStudio

translationStudio keeps track of stages chunks go through during translation.

my_rc/.apps/ts/
|-status.json

translationCore

translationCore keeps track of checking information.

my_rc/.apps/tc/
|-checkdata/
| |-LexicalChecker.tc
| |-ProposedChanges.tc
| |-common.tc
|
|-tc-manifest.json

25

Resource Container Documentation, Release 0.2

26 Chapter 5. App Meta

CHAPTER 6

USFM to Manifest

When converting a USFM file such as 01-GEN.usfm into an RC follow the rules below when populating the Manifest
File.

Map

Some values are known by default since USFM is always used for Bible projects:

• dublin_core:type = book

• dublin_core:conformsto = rc0.2

• dublin_core:format = text/usfm

• dublin_core:subject = Bible translation

• projects:categories = bible-ot or bible-nt depending on the project identifier

The rest may be parsed from the USFM:

id_<CODE>_(Name of file, Book name, Language, Last edited)

• code -> projects:identifier

• Book name -> dublin_core:title

• Language -> dublin_core:language:title

• Last edited -> dublin_core:modified

h_text...

• text -> projects:title

The following items will need to gathered by the person or app doing the conversion:

• dublin_core:identifier

• dublin_core:language:identifier

27

Resource Container Documentation, Release 0.2

• dublin_core:language:direction

• dublin_core:rights

• dublin_core:contributor

• projects:versification

28 Chapter 6. USFM to Manifest

CHAPTER 7

Slug

A slug is a word or a few words that uniquely describe an object. Slugs are often used instead of an id (from a database)
due to their readability and portability.

Syntax

Slugs are composed of lowercase alphanumeric characters and hyphens.

abcdefghijklmnopqrstuvwxyz1234567890-

• The first character in a slug must be a letter.

• The last character in a slug must not be a hyphen.

Examples

gen
pt-br
aey-x-haya
custom-slug-123
my-1st-slug

29

Resource Container Documentation, Release 0.2

30 Chapter 7. Slug

CHAPTER 8

Date

Dates follow the encoding scheme defined in the W3CDTF profile of ISO 8601.

Example

1994-11-05
1994-11-05T08:15:30-05:00

Corresponds to:

November 5, 1994
November 5, 1994, 8:15:30 am, US Eastern Standard Time.

31

https://www.w3.org/TR/NOTE-datetime

Resource Container Documentation, Release 0.2

32 Chapter 8. Date

CHAPTER 9

Code Libraries

Below are a few libraries designed to work with Resource Containers (RCs). If you would like to have your library
displayed in this list please open an issue on GitHub.

Android

• unfoldingWord-dev/android-resource-container

Node.js

• unfoldingWord-dev/node-resource-container

Python

• unfoldingWord-dev/python-resource-container

33

https://github.com/unfoldingWord-dev/Resource-Container/issues
https://github.com/unfoldingWord-dev/android-resource-container/tree/rc0.2
https://github.com/unfoldingWord-dev/node-resource-container/tree/rc0.2
https://github.com/unfoldingWord-dev/python-resource-container/tree/rc0.2

	Resource Container Structure
	Directory Structure
	Project Directory
	Config
	Table of Contents

	Manifest File
	Definitions
	Generating From USFM

	Container Types
	Book (book)
	Image (img)
	Audio (audio)
	Video (vid)
	Help (help)
	Dictionary (dict)
	Manual (man)
	Bundle (bundle)

	Linking
	Structure
	External URLS
	Examples
	Abbreviations
	Short Links
	Automatically Linking Bible References

	App Meta
	translationStudio
	translationCore

	USFM to Manifest
	Map

	Slug
	Syntax
	Examples

	Date
	Example

	Code Libraries
	Android
	Node.js
	Python

